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Inclusion of solid particles drastically affects the pattern evolution of phase separation of a binary fluid
mixture, via preferential wetting of one of the phases to the particles. Here we study this problem by numerical
simulation, which incorporates interparticle hydrodynamic interactions properly. When particles favor one of
the components of a mixture, wetting layers are quickly formed on the particle surfaces and all particles are
eventually included into the more wettable phase. For immobile particles, domains of the more wettable phase
are pinned to the particles and the domain growth is thus suppressed. For this case, the domain size at a certain
phase-separation time decreases monotonically with increasing the particle concentration. For mobile particles,
on the other hand, the reentrant morphological transformation is observed as a function of the particle con-
centration: With an increase in the particle concentration, the domain morphology of the more wettable phase
sequentially changes from network, droplet to network. We found that the final morphological transition is
induced by wetting-induced depletion interaction: Strong attractive interactions act among particles when the
total volume of the more wettable phase is not enough to cover all the particles by wetting layers.

DOI: 10.1103/PhysRevE.73.061506 PACS number�s�: 64.75.�g, 68.08.Bc, 81.07.�b, 82.20.Wt

I. INTRODUCTION

Wetting phenomena �1,2� are known to drastically affect
phase separation and the resulting pattern evolution �3�. For
a binary mixture containing particles, particles induce com-
plex dynamic couplings between wetting and phase separa-
tion due to their mobility and produce a rich variety of mor-
phology �4,5�. Usually particles favor one of the phases,
which is the situation we consider here, although neutral par-
ticles can sit just on the domain interface �6,7�. Upon phase
separation, wetting layers are quickly formed on the particle
surfaces �8� and then phase separation proceeds so that the
phase more wettable to particles contains all the particles.
This problem has been intensively studied both experimen-
tally �4,9,10� and numerically �11–22�. To understand the
pattern evolution kinetics, the hydrodynamic interaction be-
tween particles is one of the most difficult but important
problems. A few numerical methods have been employed,
which include a cell dynamics method �15�, a lattice Boltz-
mann method �16,17�, a molecular dynamics method �18,19�,
and a dissipative particle dynamics method �20�. These stud-
ies revealed that the introduction of particles into a binary
fluid mixture suppresses the hydrodynamic flow induced by
the interface motion and thus the domain growth slows down
�15–18�.

Here we propose a numerical method based on a “fluid
particle dynamics �FPD�” method �23� to incorporate effects
of phase separation and wetting together with hydrodynamic
effects. In our FPD method we solve flow in a system by
using a continuous field variable, and we can thus easily
incorporate various continuous field variables �order param-
eters� into a host fluid. In other words, we can use our FPD
scheme for colloidal particles immersed in various complex
fluids such as an electrolyte �24�, a nematic liquid crystal
�25�, and a binary fluid mixture �this study�. This is one of
the remarkable merits of this method. Here we incorporate
compositional order parameter to a host fluid. Then, we
study the kinetics of pattern evolution of a phase-separating

binary liquid mixture containing particles by using the above
method. In particular, we investigate effects of the mobility
of particles. We report an unconventional interparticle inter-
action mediated by wetting layers on the particle surfaces
and the resulting reentrant morphological transition as a
function of the particle concentration.

The organization of this paper is as follows. In Sec. II we
explain how to extend our FPD method for a wetting prob-
lem. In Sec. III we show simulation results. In Sec. IV we
discuss interparticle interactions induced by wetting effects.
In Sec. V we summarize our paper.

II. NUMERICAL SIMULATION METHOD

A. Extension of the FPD method for a wetting problem

First we explain our simulation method. The coarse-
grained variables relevant for the physical description of
phase-separation dynamics of a fluid mixture containing par-
ticles are a particle position �ri�, a concentration field �, and
a fluid velocity field �. Index i stands for an individual par-
ticle. We describe fluid particle i using a hyperbolic tangent
function as

�i�r� = �tanh��a − �r − ri��/d� + 1�/2, �1�

where a and d are the radius and interface width of a particle,
respectively �23�. We employ the following free energy func-
tional for a binary mixture containing particles:

F��,�� =� dr	 f��� +
K

2
����2 + Wd�����2 + ��� − �̄�2�
 .

�2�

The first and second terms of the right-hand side �r.h.s.� of
Eq. �2� correspond to the Ginzburg-Landau type mixing free
energy of a binary mixture with
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f��� = −
�

2
�2 +

u

4
�4, �3�

where �, u, and K are positive constants. The third one stands
for the wetting interaction between a binary mixture and a
particle surface �represented as ����2 in our scheme�. W rep-
resents the strength of this wetting interaction; here W�0
means that the phase of ��0 favors a particle surface. Here-
after, we denote the phase more wettable to particles as “A,”
and the other as “B.” The fourth term is introduced so that
the concentration field inside each particle becomes

�� �̄ ��̄ being the average concentration�, where ���0� is
its coupling constant.

The time development of the concentration and velocity
fields are described by

��

�t
= − � · �� + L�2	 + 
 , �4�

�
��

�t
= F − � � 	 − �p + � · ����� + ����T�� , �5�

where 	 is the chemical potential defined as 	= 
�F. 
 rep-

resents the thermal fluctuation of the composition. L and �
are, respectively, the diffusion constant and the density, both
of which are assumed to be independent of �. � is the space-
dependent viscosity, which represents the particle distribu-
tion in our FPD scheme �23�

��r� = �̄ + ���
i

�i�r� . �6�

The first term of r.h.s. of Eq. �5� is the force field stemming
from particles:

F�r� = �
i

Fi�i�r�/Ai. �7�

Here Fi is the force acting on particle i, which is given by

Fi = −
�

�ri
�
j�i

V��ri − r j�� − �
d

dt
ri, �8�

and Ai is the area �or volume in three-dimensional �3D�� of
an individual particle i: Ai=dr�i�r�.

We employ the repulsive part of the Lennard-Jones poten-
tial as a direct interparticle interaction

V�r� = 4�	�2a

r
�12

− �2a

r
�6

+
1

4

 for r � 27/6a ,

V�r� = 0 for r � 27/6a .

In the above, � is the frictional coefficient for the particle
motion, which is introduced to control the mobility of par-
ticles �see below�. Here we emphasize that � is nothing to do
with the fluid viscosity.

The second term of r.h.s. of Eq. �5� represents the force
stemming from the osmotic pressure �26�. p is a part of pres-
sure, which is imposed to satisfy the incompressible condi-
tion � ·�=0. The motion of particle i is given by the aver-
aged velocity field inside the particle as �23�

dri

dt
=
� dr���r���i�r��

Ai
. �9�

B. Details of our simulation

1. On the dimensionality of simulation

In this paper, we make a two-dimensional �2D� simulation
to save a computational cost, although our method itself can
be applied to a 3D system straightforwardly. Here we make a
few comments on this dimensionality problem. Our 2D
simulation may be relevant to a phase-separating Langmuir
film with colloidal particles, or a phase-separating membrane
including proteins, although it is less obvious how to intro-
duce � experimentally in these examples. Our simulation
may also capture some features observed in our quasi-2D
experiments, in which we used sandwiched cells with glass
plates �4,5�. In these experiments, the friction arises from
contacts of particles to the sample cell walls such that it can
be controlled by changing the ratio of sample thickness and
particle size.

2. Parameter setting

In this study we set the correlation length of critical con-
centration fluctuations to be the interfacial width of a par-
ticle: d=�K /�. Hereafter we scale the length and time by d
and the characteristic lifetime of critical fluctuations, d2 /L,
respectively. In the following simulations, we set the param-
eters as �=1, u=1, K=1, and L=1. We solve the above ki-
netic equations by the explicit Euler scheme using the lattice
space �x=1 and the time increment �t=0.01 in a 2D space.
The system size was 256�256. We constantly impose
Gaussian thermal fluctuation of the concentration, whose in-
tensity is �
�=10−4. Equation �5� is solved by the Makers and
Cell �MAC� method with a staggered lattice. To get rid of the
inertia effect �Stokes approximation�, we iterate the calcula-
tion of Eq. �5� to satisfy �� �

�t���10−2�F−��	�. Viscosity
parameters are set as �̄=0.5 and ��=24.5, which mean that
the viscosity ratio between the inner and outer parts of a
particle is 50.

The other parameters are set as a=2, d=1, �=1, �=2, and
W=−8. With these parameters, phase A covers the particle
surface completely. Because the particles are rather small
and the concentration of phase A increases around a particle,
we confirm that the volume fraction of phase A containing
particles is almost independent of the particle number Np for
these parameters. That is, the volumes of the two separating
phases are the same for any Np: The “volume symmetry” is
preserved. This allows us to study solely effects of the con-
centration and the mobility of particles, free from the
volume-symmetry effect on the phase-separation morphol-
ogy.

III. RESULTS

A. Phase separation of fluid mixtures containing immobile
particles

First we show results for a symmetric liquid mixture

��̄=0.0� containing immobile particles in Fig. 1. We used �
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=200 to make particles immobile. For this �, we confirmed
that particles do not move during the simulation period. In
the early stage of phase separation, spinodal decomposition
induces concentric target patterns around particles due to
wetting effects �9,22�: Phase A covers a particle surface,
which induces a depleted region around it as a result of dif-
fusion �see, e.g., Fig. 7�. Then the remaining mixture phase
separates and the surface-wetting layers around particles are
bridged. The domains grow with time to reduce the interface
energy, but very slowly since they are pinned to the immo-
bile particles. The hydrodynamic coarsening mechanism and
the Brownian-coagulation mechanism cannot operate once
the domain interface is pinned; thus, diffusion is the only
process of material transport after pinning �4,5�. In the late
stage �t�250�, most particles are located on the domain in-
terface. This is a consequence of the interface pinning by
particles. For larger Np, domains are pinned in the earlier
stage and thus the domain size becomes smaller.

Figure 2�a� shows the time development of the structure
factor of a symmetric mixture containing immobile particles
�Np=400� �see Fig. 1�c��. The structure factor is calculated as

S�q� =
1

2�q�q
�

q��q���q+�q

dq���̃�q���̃�− q��� , �10�

where �̃�q� is the Fourier transform of ��r�. The time devel-
opment of the structure factor does not obey a dynamic scal-
ing law. In Fig. 2�a�, the structure factor has a fixed peak
around q�0.5, which reflects the spatial correlation in par-
ticle positions. The small peaks and shoulders in q�0.5 are
from the particle form factor. Although there is no significant
change in the structure factor for q�0.5, the intensity grows

with time for q�0.5. This indicates that only the part of
phase A bridging fixed particles coarsens with time.

Figure 2�b� represents the temporal evolution of the char-
acteristic wave number of S�q� for various Np. The charac-
teristic wave number is calculated as

�q� =� dq qS�q��� dq S�q� . �11�

We can see in Fig. 2�b� that the domain growth slows down
in the late stage �t�100� for larger Np. �q� decays with time
apparently obeying the following power law: �q�� t−�. Here
� depends on the particle number Np. For Np=400, �
�1/9, which indicates that the presence of fixed particles
not only suppresses hydrodynamic coarsening, but also dif-
fusional one. We note that the local curvature of the domain
interface is not directly correlated with the domain size, but
rather with Np. Thus, the Lifshitz-Slyozov mechanism does
not operate efficiently, which explains why the coarsening is
so slow �4,5�. In the early stage, �q� is smaller for larger Np.
This is because the phase separation is accelerated around
particles by wetting effects.

B. Phase separation of fluid mixtures containing mobile
particles

Figure 3 shows results for a symmetric mixture containing
mobile particles ��=2�. The behavior in the early stage is
essentially the same as that for the above immobile particle
cases. Since particles are mobile, however, domains keep

FIG. 1. Pattern evolution of a symmetric liquid mixture contain-
ing immobile particles �white circles� ��=200�: �a� Np=100, �b�
Np=196, and �c� Np=400. The brightness of the matrix liquid rep-
resents the concentration field �: Gray and black color represent
phases A and B, respectively. The size of particles are enlarged by a
factor of 2 to make them visible. FIG. 2. �Color online� �a� Time development of S�q� of a sym-

metric fluid mixture including Np=400 immobile particles
�� −1=0.005��see Fig. 1�c��. �b� Temporal change of the character-
istic wave number �q� for mixtures including fixed particles.
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growing even in the late stage unlike the immobile particle
case. We found an interesting reentrant morphological
change of the late-stage domain pattern as a function of Np.
Without particles, a symmetric pattern is formed due to the
volume symmetry �26�. For Np=100, the morphological
symmetry is broken and phase B forms droplets �see Fig.
3�a��. For Np=196, on the other hand, phase A forms droplets
�see Fig. 3�b��. For Np=400, phase A forms a networklike
structure �see Fig. 3�c��. As noted before, the volume fraction
of phase A including particles does not depend on Np. Thus,
this unusual morphological change is not induced by the
change of the volume symmetry between the two phases.

Figure 4�a� shows the time development of S�q� for a
mixture including mobile particles �Np=400� �see Fig. 3�c��.
Contrary to the immobile particle case �see Fig. 2�a��, the
peak position shifts to lower q with time. The dynamics of
the pattern evolution is very different from that in a mixture
including no particle �in particular, see Fig. 3�c��. Figure 4�b�
shows the temporal evolution of the characteristic wave
number of S�q� for several Np. In the early stage �t�200�,
the domain growth is faster for larger Np, as can also be seen
in Fig. 3. �q� decreases faster than in immobile particle cases
for all Np. Save for Np=400, the late-stage growth dynamics
is almost independent of Np. The exponent of the power-law
growth is ��1/2, which seems to be consistent with that of
a symmetric fluid mixture in 2D �27�.

As shown in Fig. 3, the pattern evolution of mixtures
including mobile particles has interesting character, which
cannot be explained by the knowledge on normal phase sepa-
ration of a binary fluid mixture without particles. Since the
Fourier-space analysis does not provide useful information
on the morphological characteristics of the domain pattern,
we will study this point in a real-space morphological analy-
sis.

C. Characterization of domain morphology

Figure 5 summarizes the dependences of the simulated
domain pattern at t=1000 on Np and � −1. We can see reen-
trant morphological changes of the domain pattern as a func-
tion of Np and � −1. The time development of the structure
factor provides useful information if the topology of the do-
main pattern is well characterized beforehand. However, it is
not so useful for the characterization of domain topology
itself. Thus we use the 2D Minkovski functional �28�, which

FIG. 3. Pattern evolution of a symmetric liquid mixture contain-
ing mobile particles ��=2�. �a� Np=100, �b� Np=196, and �c� Np

=400. The brightness of the matrix liquid represents the concentra-
tion field � : Gray and black color represent phases A and B, respec-
tively. The size of particles are enlarged by a factor of 2 to make
them visible. FIG. 4. �Color online� �a� Time development of S�q� for a sym-

metric fluid mixture including Np=400 mobile particles �� −1=0.5�
�see Fig. 3�c��. �b� Temporal change of the characteristic wave num-
ber �q� for mixtures including mobile particles.

FIG. 5. Dependences of the domain pattern at t=1000 on the
particle number Np �or � /R0; on its definition see Sec. IV B� and the
mobility � −1. The brightness of the matrix liquid represents the
concentration field �: Gray and black color represent phases A and
B, respectively. The size of particles are enlarged by a factor of 2 to
make them visible.
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corresponds to the Euler characteristic in 3D. Here we briefly
explain how to calculate the 2D Minkovski functional. First
we label a lattice site with ��0 as A and a lattice site with
��0 as B. FL is the number of lattice sites A. Vo is the
number of vertices that have A sites as neighbors, but are not
fully surrounded by A sites. Vi is the number of vertices that
are completely surrounded by four A sites. Ei is the number
of edges between two neighboring A sites and Eo is the num-
ber of edges between A and B sites. Using these values, the
2D Minkovski functional �E is calculated as �E=2FL+Vo
+2Vi−Eo−2Ei. In our definition, the positive value of �E
means that phase A forms droplets and �E /2 corresponds to
the number of phase A droplets.

Figure 6 shows results of our analysis of the 2D Mink-
ovski functional. For immobile particles ��=200�, �E is al-
ways positive and monotonically increases with increasing
Np: Phase A always forms a droplet structure and the domain
size is smaller for larger Np, consistent with what we see in
Fig. 1. For the same Np, �E decreases with decreasing �,
which indicates that the number of droplets of phase A de-
creases with decreasing �. This is because the mobility of
droplets containing particles decreases for larger �, which
suppresses the Brownian coagulation and hydrodynamic
coarsening mechanisms. For the most mobile particles ��
=2�, �E becomes negative for both low �Np=100� and high
�Np=400� particle concentration, whereas it is positive for
Np=144, 196, and 289. This is consistent with the fact that
phase A forms a network structure for Np=100 and Np
=400, whereas it forms a droplet structure for Np=196 �see
Fig. 3�.

IV. DISCUSSION

A. Effects of wetting on interaction between two particles

Figure 7 shows the formation process of target patterns
around two particles. The initial values of the compositional

order parameter are �̄=0.4, 0.0, and −0.4 for Figs. 7�a�–7�c�,
respectively. The corresponding volume fractions of phase A
are 70, 50, and 30 %. After the formation of target patterns
the particles approach with each other �see also Fig. 8�,
which indicates there exists an attractive interaction between

the particles. Even in asymmetric mixtures, the concentric
patterns are formed around the particles, which are selec-
tively covered by phase A, as expected �9,22�. Subsequently
the depleted regions are formed around the covered particles
as a result of diffusional transport of phase A to the particle
surfaces. Particles also approach with each other. In the far
field, a dot pattern is formed as a result of the composition
oscillation induced by wetting and the volume asymmetry.
We can see the long-range nature of the wetting effects,
which stems from the conserved nature of the composition
order parameter.

Figure 8 shows the temporal change in the separation be-
tween attracting particles �see Fig. 7�, in which the volume
fraction of phase A is changed. The results show that this
wetting-induced attractive interaction depends upon the par-
ticle number density and the interaction is switched on only
after wetting layers are formed around the particles by phase
separation. The attractive interaction is stronger for smaller

�̄, namely, with an increase in the degree of the lack of phase

FIG. 6. �Color online� Np dependence of the 2D Minkovski
functional �E at t=1000 for particles with different mobility. FIG. 7. A process of target pattern formation around two par-

ticles �black circles� immersed in a mixture and the resulting motion
of the particles. The particle radius is a=8 and the initial separation
is �r=24. The initial values of the compositional order parameter

are �̄=−0.4 �a�, 0.0 �b�, and 0.4 �c�. Here the particles are drawn as
their actual size.

FIG. 8. �Color online� Temporal change of the separation be-
tween particles, which are interacting by a capillary force. Initially
we put two particles in a mixture and measure the separation be-
tween the particles after the initiation of phase separation. The ver-
tical axis is scaled by the diameter of the Lennard-Jones interaction.
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A. In the mixture of �̄=0.8, the amount of phase A is enough
to completely cover the particles and thus there is no attrac-
tion. We call this unconventional attractive interaction be-
tween particles, “wetting-induced depletion attraction.”

B. Mechanism of the interparticle attractive interaction:
Wetting-induced depletion effects

Here we propose a mechanism responsible for this un-
usual reentrant morphological change. We introduce two key
lengths characterizing a mixture containing particles: One is
the thickness of the wettable layer �the first rim of a target
pattern� of phase A initially formed around a particle � and
the other is the average thickness of phase A around a par-
ticle at equilibrium R0. As mentioned before, the target pat-
tern is a result of surface-directed spinodal decomposition
�8�. Thus, its characteristic length is given by the correlation
length, i.e., the characteristic length of the most unstable
mode of spinodal decomposition �22�

� � ��2K/�� − 3u�̄2� . �12�

On the other hand, R0 is straightforwardly calculated by a
geometrical relation in 2D between the particle number den-

sity np and the volume fraction of phase A, �0= �1+ �̄� /2, as

R0 = ���0 + �a2np�/��np��1/2 − a . �13�

There can be the following three cases in terms of the
relation between � and R0: �i� ��R0; �ii� ��R0; and �iii� �
�R0. Case �i� corresponds to a case of a low particle number
density. For this case, particles do not affect phase separation
so strongly. In other words, a bicontinuous pattern is formed
as in a symmetric mixture containing no particles. It is well
known that the inclusion of particles increases the viscosity
of the host liquid. In a symmetric mixture of two liquids
having different viscosities, the more viscous phase tends to
form a continuous structure due to the asymmetric stress di-
vision between the two phases �29�. Thus, phase A, whose
viscosity effectively increases due to the particle inclusion,
tends to form a continuous network structure in this case.
This is consistent with what is seen in Fig. 3�a�. For case �ii�,
phase A can be equally divided by each particle, and thus
particles can be just covered by the wetting layer of thickness
�. In this case, droplets of phase A are formed since it is a
configuration suitable for covering particles by phase A. In
general, the hydrodynamic coalescence of contacting drop-
lets is faster than the collision interval determined by droplet
diffusion by the Brownian motion. Thus, once the droplet
pattern is formed, it grows with keeping this morphology
�30�. Case �iii� corresponds to a case of a high particle den-
sity. In this case, phase A is not enough to wet particles. This
means that the wetting layers have to be shared by more than
two particles. Thus, this depletion of phase A leads to attrac-
tive interaction among particles. With a help of interparticle
hydrodynamic interaction �23�, the attractive interaction
leads to the formation of a network structure �31�, as shown
in Fig. 3�c�.

This mechanism of interparticle attraction in a phase-
separating mixture has a connection to �a� wetting-induced

interparticle interaction known for the one-phase region �32�
and �b� a capillary force �1,33� which is induced by surface
tension associated with a liquid bridging particles. However,
our mechanism differs from these known ones in its dynamic
character unique to the intrinsically nonequilibrium nature of
phase separation, unlike the latter.

C. Relevance of our mechanism

Finally we briefly discuss a problem associated with the
dimensionality of our system �2D�. In 2D it is known that
any infinitesimal perturbation leads to the breakdown of the
morphological symmetry. For example, imperfect compensa-
tion of the volume of phase A may cause such symmetry
breaking. However, we believe that this is not the dominant
mechanism and the behavior is really induced by wetting-
induced depletion attraction. Figure 9 shows the morphologi-
cal evolution for asymmetric mixtures of three particle den-
sities. With an increase in Np, i.e., � /R0, the phase-separation
morphology changes from a droplet to a network structure.
The faster growth of droplets for �b� than �a� may be due to
the stronger attractive interaction between particles, reflect-
ing larger � /R0. Note that for � /R0�0.8 there is no attractive
interaction in our simulation. This result clearly demonstrates
that phase A forms a network even when it is a minority
phase. The process of the pattern formation shown in Fig.
9�c� is not compatible with droplet formation of phase B, but
with network formation of phase A. The process of network
formation resembles the network formation due to colloidal
aggregation �23�, and further viscoelastic phase separation of
colloidal suspensions �34�. We emphasize that the wetting-

FIG. 9. Pattern evolution of an asymmetric liquid mixture

��̄=−0.2� containing mobile particles �white circles� ��=2�: �a�
Np=144 �� /R0=0.81�, �b� Np=289 �� /R0=1.27�, and �c� Np=400
�� /R0=1.59�. The brightness of the matrix liquid represents the
concentration field �: Gray and black color represent phases A and
B, respectively. The size of particles are enlarged by a factor of 2 to
make them visible.
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induced depletion attraction is stronger for the less volume
fraction of phase A �see Fig. 8�. This helps the formation of
a network structure even for a small volume fraction of phase
A.

V. SUMMARY

To summarize, we studied how wetting to particles affects
a phase separation process of a binary fluid mixture. We
found an unconventional attractive interaction between par-
ticles, which we call “wetting-induced depletion attraction.”
Inclusion of hydrodynamics leads to particle drift motion
directly driven by “wetting-induced depletion attraction.”
This leads to an unusual reentrant morphological change as a
function of the particle concentration. This interaction may
be used to control the morphology of a binary mixture con-

taining nanoparticles; for example, the formation of a par-
ticle network can be used for the formation of a conductive
network of metallic particles. The relationship between
wetting-induced network formation of particles and vis-
coelastic phase separation is also an interesting problem for
future study.

Although our simulation is performed in 2D, its extension
to 3D is straightforward. Although we expect the essential
physics remains the same in 3D, this point should be checked
carefully in the future.
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